Abstract
Prior distributions for Bayesian inference that rely on the $l_1$-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). These $l_1$-type priors include the total variation (TV) prior and the Besov $B^s_{1,1}$ space prior, and in general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with Gaussian priors, to inverse problems with $l_1$-type priors. We use a variable transformation to convert an $l_1$-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several deconvolution problems and an elliptic PDE inverse problem, using TV or Besov $B^s_{1,1}$ space priors. Our results show that the transformed RTO algorithm characterizes the correct posterior distribution and can be more efficient than other sampling algorithms. The variable transformation can also be extended to other non-Gaussian priors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.