Abstract
Molecular one-dimensional (1D) electron systems have attracted much attention due to their unique electronic state, physical and chemical properties derived from high-aspect-ratio structures. Among 1D materials, mixed-valence halogen-bridged transition-metal chain complexes (MX-chains) based on coordination assemblies are currently of particular interest because their electronic properties, such as mixed-valence state and band gap, can be controlled by substituting components and varying configurations. In particular, chemistry has recently noted that dimensionally extending MX-chains through organic rung ligands can introduce and modulate electronic coupling of metal atoms between chains, i. e., interchain interactions. In this review, for the first time, we highlight the recent progress on MX systems from the viewpoint of dimensionally extending from 1D chain to ladder and nanotube, mainly involving structural design and electronic properties. Overall, dimensional extension can not only tune the electronic properties of MX-chain, but also build the unique platform for studying transport dynamics in confined space, such as proton conduction. Based on these features, we envision that the MX-chain systems provide valuable insights into deep understanding of 1D electron systems, as well as the potential applications such as nanoelectronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have