Abstract
The coupling and competition between various degrees of freedom at the interface of transition metal oxide heterointerfaces greatly enrich their physical properties and expand their relevant application scope. It has been reported that dimensionality is an effective method to regulate the properties of oxide heterostructure. The structure of SCO film exhibits a planar-type-to-chain-type transformation with the change of thickness. In this work, the high-quality SCO/LCMO superlattices are deposited by a pulsed laser deposition system. And the interfacial exchange coupling effect is effectively manipulated by controlling the dimensionality of SCO layer. X-ray absorption spectrum (XAS) measurement shows that the charge transfer occurs at the heterointerface. When the SCO layer is thin, the interfacial superexchange coupling supported by charge transfer generates a weak magnetic moment to pin the ferromagnetic LCMO layer. As the SCO layer thickens, the charge transfer will decrease. Meanwhile, the long-range antiferromagnetic order in thicken SCO layer can interact with LCMO layer, resulting in the exchange bias effect. This experiment confirms the important role of dimensionality in modulating the properties in multifunctional oxide heterostructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.