Abstract

Superconducting composite products of type YBa2Cu3O7−d (noted Y-123) added with different contents (x wt.%) of tungsten oxide nanoparticles (WO3 NPs), x = 0.0–1.0 wt%, were produced via the standard solid-state reaction technique. Samples were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrical resistivity measurements. XRD examination showed that the Y-123 orthorhombic structure is not altered by WO3 NPs additions. SEM observations indicated a reduction in the grains size with the increase of nanoparticles content. The investigation of the excess conductivity of different prepared composites was analyzed using Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuations regimes. The coherence length along c-axis at zero-temperature (ξc(0)), lower and upper critical magnetic fields (Bc1 and Bc2), critical current density (Jc) and numerous other superconducting parameters were estimated with respect to WO3 NPs content. Compared to undoped Y-123 sample, it was found that an amount of x = 0.05 wt% of WO3 NPs is appropriate to improve the physical performances of Y-123, whereas with further increasing x, these performances were weakened.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.