Abstract

The dimensional stability of adsorbent beads subjected to varying temperature conditions must be understood to assess the effect of thermal cycling on both the adsorbent and the structure that contains it. Most of the literature on the coefficient of thermal expansion (CTE) of adsorbents relates to zeolite crystals or clusters of crystals with application to membranes. Such crystals or powder materials have been shown to exhibit both positive and negative volume expansion coefficients depending upon the temperature range. This duality in the CTE with increasing temperature and the large variation in the CTE magnitude for a given zeolite structure suggest that the dimensional stability of zeolite crystals under varying thermal conditions is not likely a good indicator of the thermal stability of agglomerated zeolites. In this study, a method has been developed and applied to measure the CTE of activated alumina and 13X molecular sieve adsorbent beads. A McBain gravimetric microbalance was modified in a simple manner to be used as a dilatometer. The method was validated by measuring the CTE of a 316 stainless steel rod and showing that the measured CTE of this study agreed with the published CTE within 3.3 %. Average CTEs for alumina and 13X adsorbents were determined as 4.88 × 10−6 and 2.96 × 10−6 mm/mm/ °C, respectively for the range of temperature 20–400 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.