Abstract

A key to understanding how the brain develops is to understand how learning can change brain function. One index of learning that takes place in early childhood involves the comprehension and production of labels describing the shape and color features of objects, a process known as dimensional label learning (DLL). DLL requires integrating auditory and visual stimuli to form a system of mappings that link label representations (e.g. “red” and “color”) and visual feature representations (e.g. “red” and the hue red). Children gain expertise with these labels between the ages of 2 and 5 years, and at the same time they begin to demonstrate skills in using labels to guide cognitive function in other domains. For example, one of the hallmark measures of executive function development requires children to use verbally instructed rules to guide attention to visual dimensions. The broader impact of DLL, however, has not yet been explored. Here, we examine how the neural processes associated with the comprehension and production of labels for visual features predicts later performance on executive function tasks. Specifically, we show that left frontal cortex is activated during comprehension and production tasks at 33 months of age. Moreover, we find that neural activation in this region during label production at 33 months is associated with dimensional attention, but not spatial selective attention, at 45 months. These results shed new light on the role of label learning in developmental changes in brain and behavior. Moreover, these data suggest that dimensional label learning generalizes beyond the learned information to influence other aspects of cognition. We anticipate that these results may serve as a starting point for future work to implement label training as an intervention to influence later cognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call