Abstract
N-channel and p-channel polysilicon thin film transistors (poly-Si TFTs) with different geometries were fabricated and characterized to study the interactive effects of active channel area on drain current. We find that for both non-passivated and passivated p-TFTs, since no avalanche multiplication is involved, the drain current is increased with reduced active channel area due to the reduction of grain-boundary trap density. In contrast, a somewhat unexpected trap dependence of the kink effect is observed in n-TFTs. Consequently, the dependence of active channel area on drain current differs between non-passivated n-TFTs with large trap density and passivated n-TFTs with small trap density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.