Abstract

We consider the Bose gas on a $d$-dimensional anisotropic lattice employing the imperfect (mean-field) gas as a prototype example. We study the dimensional crossover arising as a result of varying the dispersion relation at finite temperature $T$. We analyze in particular situations where one of the relevant effective dimensionalities is located at or below the lower critical dimension, so that the Bose-Einstein condensate becomes expelled from the system by anisotropically modifying the lattice parameters controlling the kinetic term in the Hamiltonian. We clarify the mechanism governing this phenomenon. Subsequently we study the thermodynamic Casimir effect occurring in this system. We compute the exact profile of the scaling function for the Casimir energy. As an effect of strongly anisotropic scale invariance, the Casimir force below or at the critical temperature $T_c$ may be repulsive even for periodic boundary conditions. The corresponding Casimir amplitude is universal only in a restricted sense, and the power law governing the decay of the Casimir interaction becomes modified. We also demonstrate that, under certain circumstances, the scaling function is constant for suffciently large values of the scaling variable, and in consequence is not an analytical function. At $T > T_c$ the Casimir-like interactions reflect the structure of the correlation function, and, for certain orientations of the confining walls, show exponentially damped oscillatory behavior so that the corresponding force is attractive or repulsive depending on the distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call