Abstract

We study a two-dimensional (2D) array of coupled 1D tubes of interacting bosons. Such systems can be produced by loading ultracold atoms in anisotropic optical lattices. We investigate the effects of coupling the tubes via hopping of the bosons (i.e. Josephson coupling). In the absence of a periodic potential along the tubes, or when such potential is incommensurate with the boson density, the system undergoes a transition from an array of incoherent Tomonaga–Luttinger liquids at high temperature to an anisotropic Bose–Einstein condensate (BEC), at low temperature. We determine the transition temperature and long wavelength excitations of the BEC. In addition to the usual gapless (Goldstone) mode found in standard superfluids, we also find a gapped mode associated with fluctuations of the amplitude of the order parameter. When a commensurate periodic potential is applied along the tubes, they can become 1D Mott insulators. Intertube hopping leads to a deconfinement quantum phase transition between the 1D Mott insulators and the anisotropic BEC. We also take into account the finite size of the gas tubes as realized in actual experiments. We map out the phase diagram of the quasi-1D lattice and compare our results with the existing experiments on such systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.