Abstract

We have measured the electrical resistivity and Seebeck coefficient of CeTe2−xSbx (x = 0.0, 0.05, 0.1, 0.25, and 0.5) single crystals from 100 K to 300 K along the ab-plane, and we calculated their electronic structures and Fermi surfaces by using the density functional theory approach. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior, which induce the charge density wave (CDW). In addition, there is a 3-dimensional (3D) electron Fermi surface hindering the perfect CDW gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. Here we show the strong relationship between the dimensionality of CDW and high thermoelectr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.