Abstract
In this report, we present a neural process model that explains visual dimensional attention and changes in visual dimensional attention over development. The model is composed of an object representation system that binds visual features such as shape and color to spatial locations and a label learning system that associates labels such as “color” or “shape” with visual features. We have previously demonstrated that this model explains the development of flexible dimensional attention in a task that requires children to switch between shape and color rules for sorting cards. In the model, the development of flexible dimensional attention is a product of strengthening associations between labels and features. In this report, we generalize this model to also explain development of stable and selective dimensional attention. Specifically, we use the model to explain a previously reported developmental association between flexible dimensional attention and stable dimensional attention. Moreover, we generate predictions regarding developmental associations between flexible and selective dimensional attention. Results from an experiment with 3- and 4-year-olds supported model predictions: children who demonstrated flexibility also demonstrated higher levels of selectivity. Thus, the model provides a framework that integrates various functions of dimensional attention, including implicit and explicit functions, over development. This model also provides new avenues of research aimed at uncovering how cognitive functions such as dimensional attention emerge from the interaction between neural dynamics and task structure, as well as understanding how learning dimensional labels creates changes in dimensional attention, brain activation, and neural connectivity.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have