Abstract

A dimensional method was employed to evaluate the microscale gas breakdown characteristics at atmospheric pressure, resulting in a universal breakdown curve applicable to different types of gases (e.g., Ar, Xe, Ne, and N2). As the gap distance decreases, the breakdown mode transitions from ion-induced secondary electron emission to the field emission regime. In the field emission regime, the positive space charge effect becomes more significant. We discovered that incorporating the positive space charge effect in the field emission regime can be achieved by modifying the local electric field enhancement factor β. Consequently, we propose an effective electric field enhancement factor, βeff, which scales linearly with β, to accurately reproduce the breakdown curve while considering the positive space charge effect. This proposed approach significantly simplifies the numerical model. Additionally, we examined the effects of gas pressure, gap distance, cathode properties (e.g., work function and secondary electron emission coefficient), and electric field nonuniformity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.