Abstract

Dimension reduction aims to project a high‐dimensional dataset into a low‐dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point‐cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation ( curves), cluster induction (V measure), and classification accuracy than the most relevant dimension reduction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.