Abstract

In this paper, a dimension reduction method is proposed by using the first derivative of the conditional density function of response given predictors. To estimate the central subspace, we propose a direct methodology by taking expectation of the product of predictor and kernel function about response, which helps to capture the directions in the conditional density function. The consistency and asymptotic normality of the proposed estimation methodology are investigated. Furthermore, we conduct some simulations to evaluate the performance of our proposed method and compare with existing methods, and a real data set is analyzed for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.