Abstract

We mathematically and experimentally evaluate the validity of dimension-reduction methods for the computation of similarity in image pattern recognition. Image pattern recognition identifies instances of particular objects and distinguishes differences among images. This recognition uses pattern recognition techniques for the classification and categorisation of images. In numerical image pattern recognition techniques, images are sampled using an array of pixels. This sampling procedure derives vectors in a higher-dimensional metric space from image patterns. To ensure the accuracy of pattern recognition techniques, the dimension reduction of the vectors is an essential methodology since the time and space complexities of processing depend on the dimension of the data. Dimension reduction causes information loss of topological and geometrical features of image patterns. Through both theoretical and experimental comparisons, we clarify that dimension-reduction methodologies that preserve the topology and geometry in the image pattern space are essential for linear pattern recognition. For the practical application of methods of dimension reduction, the random projection works well compared with downsampling, the pyramid transform, the two-dimensional random projection, the two-dimensional discrete cosine transform and nonlinear multidimensional scaling if we have no a priori information on the input data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.