Abstract

Multidimensional integrated micro/nanostructures are vitally important for the implementation of versatile photonic functionalities, whereas current material structures still suffer undesired surface defects and contaminations in either multistep micro/nanofabrications or extreme synthetic conditions. Herein, the dimension evolution of organic self-assembled structures 2D microrings and 3D microhelixes for multidimensional photonic devices is realized via a protic/aprotic solvent-directed molecular assembly method based on a multiaxial confined-assisted growth mechanism. The 2D microrings with consummate circle boundaries and molecular-smooth surfaces function as high-quality whispering-gallery-mode microcavities for dual-wavelength energy-influence-dependent switchable lasing. Moreover, the 3D microhelixes with smooth surfaces and natural twistable characteristics act as active photon-transport materials and polarization rotators. These results will broaden the horizon of constructing multidimensional microstructures for integrated photonic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call