Abstract
Zero-dimensional nanoparticles (NPs) have been demonstrated as the promising class of catalysts for various chemical and electrochemical reactions. However, the emerging Au-Ag NP catalysts suffer from single functionality, limited activity enhancement, and unsatisfactory stability problems. Here, we report a facile kinetically controlled solution method to prepare a new class of Au-Ag nanoporous sponges (NSs) composed of three-dimensional networks without using additional stabilizing agents at room temperature. The unexpected shift of the d-band center in our Au-Ag NSs was observed for the first time in Au-Ag bimetallic systems, which effectively activates the Au-Ag NSs for electrochemical reactions. The robust electronic effect coupled with abundant accessible active sites from the hierarchically porous architecture make the bare Au-Ag NSs a superior multifunctional catalyst for oxygen reduction, ethylene glycol (EG) oxidation, and glucose oxidation reactions compared to the commercial Pt/C electrocatalyst in alkaline medium. The optimized AuAg3.2 NSs deliver a mass activity of 1.26 A mgAu-1 toward oxygen reduction reaction, which is ∼8.2 times as high as that of the Pt/C electrocatalyst, simultaneously showing outstanding stability with negligible activity decay after 10 000 cycles. For the anodic reactions, these AuAg3.2 NSs show extremely high activity and stability toward both EG and glucose catalytic oxidation reactions with a higher mass activity of 7.58 and 1.48 A mgAu-1, about 3- and 18.5-fold enhancement than Pt/C, respectively. This work provides important insights into the structural design, performance optimization, and cost reduction to promote the practical applications of liquid fuel cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have