Abstract
We evolute a fireball of quark–gluon plasma (QGP) at thermal-dependent chemical potential (TDCP) through a statistical model in the pionic medium. The evolution of the fireball is explained through the free energy created in the pionic medium. We study the dilepton production at TDCP from such a fireball of QGP and hadronic phase. In this model, we take a finite quark mass dependence on temperature and parametrization factor. The temperature and factor enhance in the growth of the droplet formation of quarks and gluons as well as in the dilepton production rates. The production rate shows dilepton spectrum in the low mass region of the lepton pair as 0–1.2 GeV and in the intermediate mass region of 1.0–4.0 GeV. The rate of production is observed to be a strong increasing function of the TDCP for quark and antiquark annihilation. We compare the result of dilepton production at this TDCP with the production rate of the recent dilepton productions at zero and finite baryonic chemical potential and found the result far ahead in the production rates of dilepton at TDCP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have