Abstract

Dilepton production in proton- and nucleus-induced reactions is studied in the relativistic transport model using initial conditions determined by the string dynamics from RQMD. It is found that both the CERES and HELIOS-3 data for dilepton spectra in proton-nucleus reactions can be well described by the ‘conventional’ mechanism of Dalitz decay and direct vector meson decay. However, to provide a quantitative explanation of the observed dilepton spectra in central S+Au and S+W collisions requires contributions other than these direct decays. Introducing a decrease of vector meson masses in hot and dense medium, we find that these heavy-ion data can also be satisfactorily explained. This agrees with our earlier conclusions based on a fire-cylinder model. We also give predictions for Pb+Au collisions at 160 GeV/nucleon using current CERES mass resolution and acceptance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.