Abstract
The Standard Model Higgs searches using the first 1-2 fb-1 of LHC data can be used to put interesting constraints on new scalar particles other than the Higgs. We investigate one such scenario in which electroweak symmetry is broken via strongly coupled conformal dynamics. This scenario contains a neutral scalar dilaton---the Goldstone boson associated with spontaneously broken scale invariance---with a mass below the conformal symmetry breaking scale and couplings to Standard Model particles similar (but not identical) to those of the Standard Model Higgs boson. We translate the LEP and LHC Higgs limits to constrain the dilaton mass and conformal breaking scale. The conformal breaking scale f is constrained to be above 1 TeV for dilaton masses between 145 and 600 GeV, though it can be as low as 400 GeV for dilaton masses below 110 GeV. We also show that (i) a dilaton chi with mass below 110 GeV and consistent with the LEP constraints can appear in gg --> chi --> gamma gamma with a rate up to ~10 times the corresponding Standard Model Higgs rate, and (ii) a dilaton with mass of several hundred GeV is much narrower than the corresponding Standard Model Higgs, leading to improved search sensitivity in chi --> ZZ --> 4l.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.