Abstract

In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next?By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work.At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of puzzlement. The apparent absence of hints in the LHC experimental data of new phenomena that could relate to dark matter, dark energy, the dominance of matter over antimatter in the Universe, the unification of the strong and the electroweak interactions and their further unification with gravity left the Symposium with no guidance as to how to answer the question: what next? And in experimental fundamental science it is not the confirmation of already established theories that thrills the most; it is the appearance of the unexpected that creates the greatest excitement.However, the LHC is only at the beginning of its voyage into the uncharted territories of higher energies and smaller dimensions that it was built for, so the possibilities for unexpected discoveries are only starting to be explored. The LHC will start up again in 2015 with nearly twice its previous energy and with increased luminosity—new discoveries might then appear sooner than we even dare hope for!The LHC Nobel Symposium was attended by about 60 invited participants and lasted four days. The program was divided into seven sessions; QCD and Heavy Ion Physics, B Physics, Electroweak Physics, The Higgs Boson, Connections to Neutrino Physics and Astroparticle Physics, Beyond the Standard Model and Forward Look. There were 27 plenary invited talks given by participants, each followed by lively discussions. All but one of the speakers have submitted write-ups of their talks for these proceedings. We are hopeful that the remaining talk will be published in a forthcoming issue of Physica Scripta .I am gratified that Professor Roland Allen has agreed to write a paper on the essence of the Higgs boson discovery to be published in Physica Scripta , intended for undergraduate students and educated physicists, regardless of their field of research.I wish to express my deep gratitude to all Speakers and Participants in the Symposium, to the Members of the Local and International Organizing Committees, to the referees of these Proceedings and to the staff at Uppsala University, in particular my Administrative Assistant for the Symposium, Marja Fahlander, at the Royal Swedish Academy of Sciences, at the Nobel Foundation and at the Institute of Physics Publishing Company for Physica Scripta for realizing this enlightening Symposium at its proceedings.The Nobel Symposium was financed by the Nobel Foundation.Tord Ekelöf Chair of the LHC Nobel Symposium Local Organizing Committee and LHC Nobel Guest Editor for the Symposium Proceedings Members of the Local Organizing Committee of the LHC Nobel SymposiumTord Ekelöf (Uppsala University, Chair)Kerstin Jon-And (Stockholms University)Bengt Lund-Jensen (Royal Institute of Technology)Anders Oskarsson (Lunds University)Torsten Åkesson (Lund University)Barbro Åsman (Swedish Royal Academy of Sciences) Members of the International Advisory Committee of the LHC Nobel SymposiumPierluigi Campana (INFN Frascati)Fabiola Gianotti (CERN)Paolo Giubellino (INFN-Torino)Joe Incandela (UC Santa Barbara)Young-Kee Kim (FNAL)Michelangelo Mangano (CERN)Lisa Randall (Harvard University)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call