Abstract

In finding roots of polynomials, often two or more roots that are close together in solution space are very difficult to be resolved by a root-finder. To solve this problem, this Letter proposes a dilation method to transform the positions of roots in space so that all roots in space are pulled further apart. As a result, those close (including complex) roots can be readily resolved efficiently by a root-finder. In addition, in this Letter a complex version of constrained learning algorithm is derived. Moreover, our previously proposing feedforward neural network (FNN) root-finder is adopted to address the root finding issue. Finally, some satisfactory results that support our approach are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.