Abstract

A new partitioning feedforward neural network (FNN) root-finder model for recursively finding the arbitrary (including complex) roots of higher order arbitrary polynomials is proposed in this paper. Moreover, an efficient complex version of constrained learning algorithm (CLA), which incorporates the a priori information, i.e., the constrained relation between the original polynomial coefficients and the remaining polynomial coefficients plus the partitioned roots out from the original polynomial, is constructed to train the corresponding partitioning neural root-finder network for finding the arbitrary roots of arbitrary polynomials. Finally, the experimental results are given to show the efficiency and effectiveness of our proposed neural model with respect to traditional non-neural root-finders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.