Abstract
The formation of advanced glycation end-products (AGE) and aldose reductase activity have been implicated in the development of diabetic complications. The present study was aimed to evaluate human recombinant aldose reductase (HRAR) and AGE inhibitory activity of seven natural dihydroxanthyletin-type coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), Pd-C-I (3), Pd-C-II (4), Pd-C-III (5), decursidin (6), and (+)-trans-decursidinol (7) from Angelica decursiva. Coumarins 1-7 showed potent HRAR and AGE inhibitory activities with ranges of IC50 values of 1.03-21.31 and 0.41-5.56µM, respectively. In the kinetic study for HRAR enzyme inhibition, coumarins 1, 3, 4, and 7 were competitive-type inhibitors, 6 was a mixed-type inhibitor, whereas 2 and 5 were noncompetitive-type inhibitors. Furthermore, we also predicted the docking interactions of HRAR with coumarins 1-7 using AutoDock Vina, and as a result, the simulated enzyme-inhibitor complexes exhibited negative binding energies (Autodock Vina=-9.6 to -8.1kcal/mol for HRAR), indicating a high affinity and tight binding capacity for the HRAR active site. Our results clearly indicate the potential HRAR and AGE formation inhibitory activities of dihydroxanthyletin-type coumarins, which could be further explored to develop therapeutic modalities for the treatment of diabetes and related complications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.