Abstract
This study focused on predicting the spatial distribution of environmental risk indicators using mathematical modeling methods including machine learning. The northern industrial zone of Pavlodar City in Kazakhstan was used as a model territory for the case. Nine models based on the methods kNN, gradient boosting, artificial neural networks, Kriging, and multilevel b-spline interpolation were employed to analyze pollution data and assess their effectiveness in predicting pollution levels. Each model tackled the problem as a regression task, aiming to estimate the pollution load index (PLI) values for specific locations. It was revealed that the maximum PLI values were mainly located to the southwest of the TPPs over some distance from their territories according to the average wind rose for Pavlodar City. Another area of high PLI was located in the northern part of the studied region, near the Hg-accumulating ponds. The high PLI level is generally attributed to the high concentration of Hg. Each studied method of interpolation can be used for spatial distribution analysis; however, a comparison with the scientific literature revealed that Kriging and MLBS interpolation can be used without extra calculations to produce non-linear, empirically consistent, and smooth maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.