Abstract

Particulate matter smaller than 2.5 microns (PM2.5) is one of the main pollutants that has considerable detrimental effects on human health. Estimating its concentration levels with ground monitors is inefficient for several reasons. In this study, we build a digital twin (DT) of an atmospheric environment by fusing remote sensing and observational data. An integral part of the DT pipeline is the presence of feedback that can influence future input data. Estimated values of PM2.5 obtained from an ensemble of Random Forest and Gradient Boosting are used to provide recommendations for decreasing the agglomeration levels. We formulate a simple optimization problem for suggesting the recommendations and identify possible action policies, such as cloud seeding, scheduling of air filtering, and SMS notifications. The PM2.5 estimation part of the proposed DT pipeline has achieved RMSE and R2 of 38.94 and 0.728 (95%, CI 0.717-0.740). In addition, we investigate different approaches for quantitatively examining the contribution of each independent variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.