Abstract
Interest in digital twins continues to strengthen with technological advancements in Industrial IoT. A digital twin is a virtual representation that models a physical object and effectively provides a two-way interaction with the real system. Digital twin models can be set up to test or analyze industrial applications before deployment thereby improving the efficiency of industries. In this work, a Node-RED implementation for digital twins in the manufacturing sector is developed. Plastic injection molding is the chosen case study for the implementation of this digital twin. Node-RED is a platform that allows developers to quickly build Internet of Things applications using a simple web browser interface. The digital twin uses the Random Forest Classifier algorithm to do predictive maintenance tasks including classification of quality of products. An easy-to-use dashboard is developed to enable the user to interact with the digital twin. Important modules such as communication with the real environment, SMS, and email notifications are successfully implemented in the digital twin. The findings show that it is feasible to build a Node-RED digital twin. The flexibility of Node-RED makes it suitable for building architecture of varying complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Trends in Computer Science and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.