Abstract

Low-risk transmission performance including elastic deformation, loaded contact pattern, load distribution and loaded transmission error is of paramount significance to the actual manufacturing for non-orthogonal aviation spiral bevel gears. The advanced digital twin technology is introduced into tooth flank grinding. A new digital twin modeling considering low-risk transmission performances is proposed. In the modeling, low-risk transmission performance driven simulation, sensitivity analysis and robust control are developed, respectively Firstly, data-driven tooth surface modeling is developed by simulating free-form tooth surface grinding including gear tilt method and pinion double helical method. With local geometric boundary setup meshing stiffness is determined by using local Rayleigh–Ritz solution. Then, to deal with the sensitivity of gear assembly, an improved tooth contact analysis (TCA) is developed. Moreover, numerical loaded tooth contact analysis (NLTCA) is performed to build a bridge between of low-risk performances and hypoid generator parameters. The low-risk transmission performance driven control model is established by using hypoid generator parameters modification. Finally, sensitivity analysis strategy-based robust control model is solved by using Levenberg–Marquardt method for accurate hypoid generator parameters having modification amount. The provided numerical instance can verify the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.