Abstract

AbstractThe converter is an indispensable key equipment in the steel manufacturing industry. With the increasing demand for high-quality steel, there is an increasing demand for monitoring and controlling the status of the converter during the smelting process. Compared to other manufacturing industries, such as food processing and textile, converter steelmaking requires a larger keep-out zone due to its ultra-high temperatures and harsh smelting environment. This makes it difficult for personnel to fully understand, analyze, and manage the smelting process, resulting in low production efficiency and the inability to achieve consistently high-quality results. Aiming at the low virtual visualization level and insufficient monitoring ability of the converter steelmaking process, a process management method based on digital twin technology is proposed. Firstly, a digital twin system framework for full-process monitoring of converter steelmaking is proposed based on the analysis of the process characteristics of converter steelmaking. The proposed framework provides critical enabling technologies such as point cloud-based digital twin model construction, visual display, and steel endpoint analysis and prediction, to support full-process, high-fidelity intelligent monitoring. After conducting experiments, a digital twin-driven smelting process management system was developed to manage the entire smelting process. The system has proven to be effective as it increased the monthly production capacity by 77.7%. The waste of smelting materials has also been greatly reduced from 34% without the system to 7.8% with the system. Based on these results, it is evident that this system significantly enhances smelting efficiency and reduces both the costs and waste associated with the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.