Abstract
AbstractThe skin of the cephalopod is a 3D display, where the papillae muscles control the protrusion of each voxel by several millimeters out of the skin plane, create hierarchical textures, and collectively change the overall skin pattern in a fraction of a second. A material system capable of mimicking this response using electromechanical actuation of twisted spiral artificial muscles (TSAMs) is presented in this study. TSAMs leverage the mechanics of their twisted geometry to extend out of plane by 8 mm, corresponding to 2000% strain using a voltage of only 0.02 V mm−1. They are made of polymer fibers wrapped with a helical metal wire. These actuators are assembled on a stretchable skin with the required flexible electrical connections to form an array of digital texture voxels (DTVs). The DTV array produces arbitrary 3D surface patterns on‐demand, and provides opportunities to control hydrodynamic drag, camouflage, and haptic displays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.