Abstract

This paper presents a real-time digital speckle pattern interferometry system with twofold increase in sensitivity for the measurement of in-plane displacement and first order derivative of out-of-plane displacement (slope). Spatial phase shifting technique has been used for quantitative fringe analysis. The system employs a double aperture arrangement in front of the imaging system that introduces spatial carrier fringes within the speckle for spatial phase shifting. For in-plane displacement measurement, the scattered fields from the object are collected independently along the direction of illumination beams, and combined at the image plane. For slope measurement, a shear is introduced between the two scattered fields. Experimental results on an edge clamped circular plate subjected to in-plane rotation for in-plane displacement measurement and central loading for slope measurement are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.