Abstract

Full-duplex unmanned aerial vehicle (UAV) communication systems are characterized by mobility, so the self-interference (SI) channel characteristics change over time constantly. In full-duplex UAV communication systems, the difficulty is to eliminate SI in time-varying channels. In this paper, we propose a pilot-aid digital self-interference cancellation (SIC) method. First, the pilot is inserted into the data sequence uniformly, and the time-varying SI is modeled as a linear non-causal function. Then, the time-varying SI channel is estimated by the discrete prolate spheroidal basis expansion model (BEM). The error of block edge channel estimation is reduced by cross-block interpolation. The result of channel estimation is convolved with the transmitted data to obtain the reconstructed SI, which is subtracted from the received signal to achieve SIC. The simulation results show that the SIC performance of the proposed method outperforms the dichotomous coordinate descent recursive least square (DCD-RLS) and normalized least mean square (NLMS) algorithms. When the interference to noise ratio (INR) is 25 dB, the performance index normalized least mean square (NMSE) is reduced by 5.5 dB and 4 dB compared with DCD-RLS and NLMS algorithms, which can eliminate SI to the noise floor, and the advantage becomes more obvious as the INR increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call