Abstract
In full-duplex (FD) radios, phase noise leads to random phase mismatch between the self-interference (SI) and the reconstructed cancellation signal, resulting in possible performance degradation during SI cancellation. To explicitly analyze its impacts on the digital SI cancellation, an orthogonal frequency division multiplexing (OFDM)-modulated FD radio is considered with phase noises at both the transmitter and receiver. The closed-form expressions for both the digital cancellation capability and its limit for the large interference-to-noise ratio (INR) case are derived in terms of the power of the common phase error, INR, desired signal-to-noise ratio (SNR), channel estimation error and transmission delay. Based on the obtained digital cancellation capability, the achievable rate region of a two-way FD OFDM system with phase noise is characterized. Then, with a limited SI cancellation capability, the maximum outer bound of the rate region is proved to exist for sufficiently large transmission power. Furthermore, a minimum transmission power is obtained to achieve β-portion of the cancellation capability limit and to ensure that the outer bound of the rate region is close to its maximum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.