Abstract
Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) is an obligatory and lethal parasite of the cotton bollworm and has been extensively used in China for the control of this notorious pest. Digital gene expression (DGE) analysis was adopted for an overall comparison of transcriptome profiling between HearNPV-infected and control healthy Helicoverpa armigera larvae during an early stage post-inoculation. A total of 908 differentially expressed genes (DEGs) were identified, of which 136 were up-regulated and 597 were down-regulated. GO category and KEGG pathway analysis demonstrated that the identified DEGs involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, protein processing in endoplasmic reticulum, biosynthesis of valine, leucine, isoleucine and the spliceosome were significantly down-regulated, whereas genes involved in pancreatic secretion, protein digestion and absorption and salivary secretion showed obviously up-regulated transcription. The DEGs were verified by quantitative real-time PCR, and genes that participated in defensive response, nutritional digestion and developmental regulation exhibited specific expression patterns in a continuous time-course assessment. These results provide basic data for future research on the molecular mechanism of HearNPV infection and the interactions between lepidopteran hosts and their specific NPV parasites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have