Abstract

Long-term mutual coherence is a key factor that affects the signal-to-noise ratio and resolution of a dual-comb interferometer. To realize a phase-stable dual-comb interferometer configuration, tightly phase-locked loop systems or digital error correction methods with external optical reference are commonly used. This paper presents a self-referencing digital error correction method based on the short-term spectral characteristics of interferograms to reduce the cost and complexity of the phase-stable dual-comb interferometer configuration. In our experiment, fully mutual coherence of a dual-comb interferometer is reconstructed and 1 Hz theoretical linewidth in 1 s acquisition time is achieved by digitally compensating for time jitter, center frequency jitter, and carrier-envelope-phase jitter, offering an effective technique for advanced dual-comb applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call