Abstract
BackgroundEcologically valid evaluations of patient states or well-being by means of new technologies is a key issue in contemporary research in health and well-being of the aging population. The in-game metrics generated from the interaction of users with serious games (SG) can potentially be used to predict or characterize a user’s state of health and well-being. There is currently an increasing body of research that investigates the use of measures of interaction with games as digital biomarkers for health and well-being.ObjectiveThe aim of this paper is to predict well-being digital biomarkers from data collected during interactions with SG, using the values of standard clinical assessment tests as ground truth.MethodsThe data set was gathered during the interaction with patients with Parkinson disease with the webFitForAll exergame platform, an SG engine designed to promote physical activity among older adults, patients, and vulnerable populations. The collected data, referred to as in-game metrics, represent the body movements captured by a 3D sensor camera and translated into game analytics. Standard clinical tests gathered before and after the long-term interaction with exergames (preintervention test vs postintervention test) were used to provide user baselines.ResultsOur results showed that in-game metrics can effectively categorize participants into groups of different cognitive and physical states. Different in-game metrics have higher descriptive values for specific tests and can be used to predict the value range for these tests.ConclusionsOur results provide encouraging evidence for the value of in-game metrics as digital biomarkers and can boost the analysis of improving in-game metrics to obtain more detailed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.