Abstract
IntroductionDespite the growing number of studies describing digit ratio patterns in tetrapods, knowledge concerning certain basic issues is still scarce. In lower vertebrates such as tailless amphibians (Anura), the numbering of individual fingers on the forelimbs and their homology with the fingers of other vertebrates pose an unsolved problem. Based on reviewed data on anuran limb development, we argue that the correct finger numbering scheme should be based on the assumption that the first finger, not the fifth finger, was reduced on the forelimbs. We analyzed the digit ratio in the common toad (Bufo bufo, Bufonidae), a species characterized by well-developed sexual dimorphism whereby females are larger than males, using both numbering schemes present in the literature.ResultsWe found that the digit ratio on hindlimbs differed significantly between the sexes only in the cases of left 2D:3D, with lower digit ratios in females, and of left 3D:4D, with lower digit ratios in males. We found that sex was the only significant variable for forelimbs, differentiating 2D:3D on the left forelimb, with lower digit ratios in females; 2D:4D on the right forelimb, with lower digit ratios in males; and 3D:4D on both forelimbs, with lower digit ratios in males. These results relate to variant II reflecting the hypothesis that the first digit was reduced during phylogenesis. There was no relationship between the body size (SVL) of individuals and any digit ratio, excluding 2D:4D on the right forelimbs in models with age variables. Additionally, for a subset of data where individual age was known, the models indicated that age was linked to significant differences in 2D:4D and 3D:4D on the left hindlimbs, while age, SVL, and sex influenced 2D:4D on the right forelimbs.ConclusionWe emphasize the importance of the problem of the correct numbering of forelimb digits in Anura and, under the assumption that it was the fifth digit that was reduced, argue that earlier results on digit ratio in this group should be interpreted with caution. The detected relationship between digit ratio and age in amphibians expands our knowledge, indicating that the age of individuals should be included in future digit ratio studies. This relationship may also apply to studies using digit ratio as a noninvasive indicator of endocrine disruption in amphibians.
Highlights
Despite the growing number of studies describing digit ratio patterns in tetrapods, knowledge concerning certain basic issues is still scarce
We found that sex was the only significant variable for forelimbs, differentiating 2D:3D on the left forelimb, with lower digit ratios in females; 2D:4D on the right forelimb, with lower digit ratios in males; and 3D:4D on both forelimbs, with lower digit ratios in males
Hindlimbs Based on the general linear models (GLMs), we found that in the investigated toads, sex differences in digit ratio were significant only for left 2D:3D, with lower digit ratios in females (F = 8.638, p = 0.004), and for left 3D:4D, with lower digit ratios in males (F = 18.705, p < 0.001; Tables 2, S2)
Summary
Despite the growing number of studies describing digit ratio patterns in tetrapods, knowledge concerning certain basic issues is still scarce. The number of studies examining the relationships between digit ratio and behavioral or physical features is growing dynamically, especially in the case of Homo sapiens [3, 4] Most of these are correlation studies, but in the case of vertebrates other than humans, experimental work has been carried out, shedding new light on the evolution of the digit ratio pattern in tetrapods [5,6,7,8,9,10,11,12]. At the same time, a growing number of studies have been unable to confirm these patterns in various tetrapod lineages or have detected patterns different than expected [22,23,24]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have