Abstract

Plant-based meat analogs have increasingly attracted the attention of the food industry in recent years. However, the digestion behavior of this innovative solid food in human stomach is poorly understood. In this study, plant-based meat analogs with different internal structures were prepared with/without high-moisture extrusion technology and at different temperatures. A semi-dynamic gastric digestion system which involves the mimic processes of the secretion of gastric juice and the gastric emptying was applied. After extrusion treatment at high temperature (150 ℃), the EHT had the highest anisotropic index (H⊥/H∥=1.90) and an ideal meat-like structure. It was found that particle disintegration and swelling simultaneously occurred in the bolus of the EHT but not in the sample without extrusion treatment (the HLT) in the early stage of gastric digestion. This difference might be attributed to the compact and well-arranged anisotropic structure of the EHT resulting from the extrusion, and leads to difficult enzymatic hydrolyzation unless the particles swell and unfold the polymer chains. The difficulty in particle disintegration in the EHT during gastric digestion is the consequence of the relatively slow gastric emptying rate and the decrease of protein degradation. As a result, the EHT which underwent extrusion treatment at high temperature and possessed the best anisotropic fibrous structure exhibited the slowest gastric digestion. This novel solid food shows good potential as a desired nutritional food for people on diet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.