Abstract

AbstractDiffusion of dichloromethane in poly(lactide‐co‐glycolide) (PLGA), the rate‐limiting step in the later stages of drying of microparticles formed in common encapsulation processes, was studied by the step‐change sorption technique in a dynamic vapor sorption apparatus. Methods were developed to create films of polymer with the appropriate thicknesses for accurate diffusion determination over a wide range of solvent composition. Mutual diffusivities were measured at 5, 25, and 35°C from 10 to 70 wt % solvent. Values range from 2 × 10−10 m2/s at high solvent compositions to as low as 1 × 10−13 m2/s at solvent compositions just above the glass transition of the mixture. Equilibrium sorption isotherms were measured in the same apparatus and agreed favorably with Flory‐Huggins theory using a value of χ = 0.31. The glass transition temperatures of the system were measured over the range of 0–11 wt % solvent content by modulated differential scanning calorimetry. The composition dependence was fit to the Fox equation, which estimated values of the pure polymer and the solvent Tg to be 39.3 and −131°C, respectively. These values, along with the diffusivity data, were used to deduce the free‐volume parameters specific to PLGA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.