Abstract
We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a subdiffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg chain. Studying finite-size effects, we show numerically and theoretically that a very large crossover length exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results. We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have