Abstract

In the present work, zirconia-based nanomaterials with various stabilizers were prepared by a co-precipitation technique. Defects in these nanomaterials were characterized by positron annihilation spectroscopy which is a non-destructive technique with a high sensitivity to open volume defects and atomic scale resolution. It was found that zirconia-based nanomaterials contain vacancies and also nanoscale and meso-scale pores. Diffusion processes which occur in the nanomaterials sintered at elevated temperatures were investigated by depth sensitive positron annihilation studies on a variable energy slow positron beam. It was found that sintering causes intensive grain growth and residual porosity is removed from samples by diffusion to the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.