Abstract

In the present work, zirconia (ZrO2) nanopowders doped with yttria (Y2O3) and chromia (Cr2O3) were prepared by a co-precipitation technique. The nanopowders were then subjected to a calcination and a successive sintering at elevated temperatures up to 1500 °C. The nanostructures in these nanomaterials were characterized by positron annihilation spectroscopy (positron lifetimes and Doppler broadening measurements) which is a non-destructive technique with a high sensitivity to atomic-scale open-volume defects. It was found that the zirconia-based nanomaterials studied contain vacancy-like defects and nanoscale pores. Diffusion processes induced in these nanomaterials by sintering were investigated also by depth sensitive positron annihilation studies using a variable energy slow positron beam. Sintering was found to cause intensive grain growth and a removal of porosity by a migration of pores from the sample interior toward its surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call