Abstract

Optical and scanning electron microscopy, as well as electron microprobe analysis and electron backscatter diffraction, have been used to study diffusion processes that occur in a diffusion pair that consistsof a single-crystal CMSX-10 nickel-base superalloy and polycrystalline nickel, at temperatures of 1050–1250°C. It has been found that, in this system, the distributions of γ-stabilizing elements (Cr, Co, W, and Re) are described by the Boltzmann solution for diffusion between two semiinfinite plates of a binary alloy. The processing of these distributions has shown that the diffusion coefficients of Cr, Co, W, and Re in the multicomponent system are close to those in binary alloys of these elements with Ni. The diffusion redistribution of the elements leads to the dissolution of the γ′ phase in the nickel-base superalloy, growth of nickel grains toward the superalloy constituent of the diffusion pair, and the formation of porosity on both sides of the migrating interface, which is determined from a crystal misorientation of the alloy single crystal and nickel grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.