Abstract

We studied the diffusion of charged gold nanoparticles within a semidilute solution of weakly charged polyelectrolyte, polyacrylic acid (PAA) of high molecular weight (Mw = 106 g mol-1) by using fluorescence correlation spectroscopy (FCS). Nanoparticle size (d) was varied between 5 nm to 40 nm and PAA volume fraction (φ) in water ranged from about 8φ* to 33φ*, where φ* is the overlap volume fraction. The reduced diffusion coefficient - defined as -D/Do, where D is the diffusion coefficient in PAA solution and Do is that in neat water - has a weak dependence on the particle size. D follows a power law of the form ∼φ-0.5, which can be explained by a mean-field hydrodynamic theory in porous medium. Additional, rheology measurements showed a zero shear rate viscosity and shear thinning, which are typical of high molecular weight polyelectrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.