Abstract

AbstractBased on first principles density functional theory calculations, we identify the structure and diffusion pathway for a fluorine-silicon interstitial complex (F-Sii). We find the F-Sii complex to be most stable in the singly positive charge state at all Fermi leVels. At mid-gap, the complex is found to have a binding energy of 1.08 eV relative to bond-centered F+ and (110)-split Sii. We find the F-Sii complex has an overall migration barrier of 0.76 eV, which suggests that this complex may play an important role in fluorine diffusion. Our results should lead to more accurate models that describe the behavior of fluorine co-implants crystalline silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.