Abstract
PurposeRelationships between diffusion‐weighted MRI signals and hepatocyte microstructure were investigated to inform liver diffusion MRI modeling, focusing on the following question: Can cell size and diffusivity be estimated at fixed diffusion time, realistic SNR, and negligible contribution from extracellular/extravascular water and exchange? MethodsMonte Carlo simulations were performed within synthetic hepatocytes for varying cell size/diffusivity L/D0, and clinical protocols (single diffusion encoding; maximum b‐value: {1000, 1500, 2000} s/mm2; 5 unique gradient duration/separation pairs; SNR = {∞, 100, 80, 40, 20}), accounting for heterogeneity in (D0,L) and perfusion contamination. Diffusion (D) and kurtosis (K) coefficients were calculated, and relationships between (D0,L) and (D,K) were visualized. Functions mapping (D,K) to (D0,L) were computed to predict unseen (D0,L) values, tested for their ability to classify discrete cell‐size contrasts, and deployed on 9.4T ex vivo MRI‐histology data of fixed mouse liversResultsRelationships between (D,K) and (D0,L) are complex and depend on the diffusion encoding. Functions mapping D,K to (D0,L) captures salient characteristics of D0(D,K) and L(D,K) dependencies. Mappings are not always accurate, but they enable just under 70% accuracy in a three‐class cell‐size classification task (for SNR = 20, bmax = 1500 s/mm2, δ = 20 ms, and Δ = 75 ms). MRI detects cell‐size contrasts in the mouse livers that are confirmed by histology, but overestimates the largest cell sizes.ConclusionSalient information about liver cell size and diffusivity may be retrieved from minimal diffusion encodings at fixed diffusion time, in experimental conditions and pathological scenarios for which extracellular, extravascular water and exchange are negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.