Abstract

Co-and counter-current type transfers due to diffusion and -free- convection caused by the buoyant forces between fracture and matrix were studied experimentally using 2-D glass-bead models. Mineral oil and kerosene were used as the displaced phase. The model saturated with oil was exposed to solvent phase (pentane) under static conditions (no flow in fracture) to mimic matrix-fracture interaction during gas or liquid solvent injection in naturally fractured reservoirs. Displacement fronts and patterns were analyzed and quantified using fractal techniques to obtain correlations between the fractal properties and displacement type. Displacements resulted in a mixture of bulk diffusion and -free- convection mainly depending on the interaction type (co- or counter-current), oil type, and displacement direction (horizontal and vertical). Conditions yielding different types of displacement patterns were identified. Finally, a stochastic model that was inspired from invasion percolation and diffusion limited aggregation algorithms was developed for the horizontal displacement cases. The experimental observations were matched to the displacement patterns obtained through the stochastic modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.