Abstract
The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass–Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures.
Highlights
The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws
The main objective of this study is to investigate the fluid flow in single rough fractures and the effect of irregular morphology of fractured rock by combining fractal-dimension method and Lattice Boltzmann Method (LBM)
Higher velocities in the centre of each cross-section were observed, with a decreasing trend from the centre to the both ends. These results show that in a single fracture with a constant fractal dimension, the variation of water velocity at different locations is small, even if the local roughness of the fracture is different
Summary
The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. The fluid flow in rough fractures of underground rock is poorly understood. We present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.