Abstract

AbstractThe morphological instability of the lithium metal anode is the key factor restricting the rate capability of lithium metal solid state batteries. During lithium stripping, pore formation takes place at the interface due to the slow diffusion kinetics of vacancies in the lithium metal. The resulting current focusing increases the internal cell resistance and promotes fast lithium penetration. In this work, galvanostatic electrochemical impedance spectroscopy is used to investigate operando the morphological changes at the interface by analysis of the interface capacitances. Therewith, the effect of temperature, stack pressure, and chemical modification is investigated. The work demonstrates that introducing 10 at% Mg into the lithium metal anode can effectively prevent contact loss. Nevertheless, a fundamental kinetic limitation is also observed for the Li‐rich alloy, namely the diffusion controlled decrease of the lithium metal concentration at the interface. An analytical diffusion model is used to describe the temperature‐dependent delithiation kinetics of Li–Mg alloys. Overall, it is shown that different electrode design concepts should be considered. Mg alloying can increase lithium utilization, when no external pressure is applied while pure lithium metal is superior for setups that allow stack pressures in the MPa range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.