Abstract

Compared to lithium (Li) anode, the alloy/Li-alloy anodes show more compatible with sulfide solid electrolytes (SSEs), and are promising candidates for practical SSE-based all-solid-state Li batteries (ASSLBs). In this work, a porous Li-Al alloy (LiAl-p) anode is crafted using a straightforward mechanical pressing method. Various characterizations confirm the porous nature of such anode, as well as rich oxygen species on its surface. To the best knowledge, such LiAl-p anode demonstrates the best room temperature cell performance in comparison with reported Li and alloy/Li-alloy anodes in SSE-based ASSLBs. For example, the LiAl-p symmetric cells deliver a record critical current density of 6.0mA cm-2 and an ultralong cycling of 5000h; the LiAl-p|LiNi0.8Co0.1Mn0.1O2 full cells achieve a high areal capacity of 11.9 mAh cm-2 and excellent durability of 1800 cycles. Further in situ and ex situ experiments reveal that the porous structure can accommodate volume changes of LiAl-p and ensure its integrity during cycling; and moreover, a robust Li inorganics-rich solid electrolyte interphase can be formed originated from the reaction between SSE and surface oxygen species of LiAl-p. This study offers inspiration for designing high-performance alloy anodes by focusing on designing special architecture to alleviate volume change and constructing stable interphase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.